Fixed entire calendar layout + chat layout + chat history

This commit is contained in:
c-d-p
2025-04-21 15:36:59 +02:00
parent 9e8e179a94
commit c158ff4e0e
37 changed files with 1050 additions and 285 deletions

View File

@@ -57,4 +57,4 @@ class CalendarEventResponse(CalendarEventBase):
return v
class Config:
from_attributes = True # Changed from orm_mode
from_attributes = True

Binary file not shown.

View File

@@ -7,13 +7,13 @@ from core.database import get_db
from modules.auth.dependencies import get_current_user
from modules.auth.models import User
from modules.nlp.service import process_request, ask_ai
# Import the response schema
# Import the new service functions and Enum
from modules.nlp.service import process_request, ask_ai, save_chat_message, get_chat_history, MessageSender
# Import the response schema and the new ChatMessage model for response type hinting
from modules.nlp.schemas import ProcessCommandRequest, ProcessCommandResponse
from modules.nlp.models import ChatMessage # Import ChatMessage model
from modules.calendar.service import create_calendar_event, get_calendar_events, update_calendar_event, delete_calendar_event
# Import the CalendarEvent *model* for type hinting
from modules.calendar.models import CalendarEvent
# Import the CalendarEvent Pydantic schemas for data validation
from modules.calendar.schemas import CalendarEventCreate, CalendarEventUpdate
router = APIRouter(prefix="/nlp", tags=["nlp"])
@@ -35,9 +35,14 @@ def format_calendar_events(events: List[CalendarEvent]) -> List[str]:
@router.post("/process-command", response_model=ProcessCommandResponse)
def process_command(request_data: ProcessCommandRequest, current_user: User = Depends(get_current_user), db: Session = Depends(get_db)):
"""
Process the user command, execute the action, and return user-friendly responses.
Process the user command, save messages, execute action, save response, and return user-friendly responses.
"""
user_input = request_data.user_input
# --- Save User Message ---
save_chat_message(db, user_id=current_user.id, sender=MessageSender.USER, text=user_input)
# ------------------------
command_data = process_request(user_input)
intent = command_data["intent"]
params = command_data["params"]
@@ -45,10 +50,19 @@ def process_command(request_data: ProcessCommandRequest, current_user: User = De
responses = [response_text] # Start with the initial response
# --- Save Initial AI Response ---
# Save the first response generated by process_request
save_chat_message(db, user_id=current_user.id, sender=MessageSender.AI, text=response_text)
# -----------------------------
if intent == "error":
raise HTTPException(status_code=400, detail=response_text)
# Don't raise HTTPException here if we want to save the error message
# Instead, return the error response directly
# save_chat_message(db, user_id=current_user.id, sender=MessageSender.AI, text=response_text) # Already saved above
return ProcessCommandResponse(responses=responses)
if intent == "clarification_needed" or intent == "unknown":
# save_chat_message(db, user_id=current_user.id, sender=MessageSender.AI, text=response_text) # Already saved above
return ProcessCommandResponse(responses=responses)
try:
@@ -56,48 +70,100 @@ def process_command(request_data: ProcessCommandRequest, current_user: User = De
case "ask_ai":
ai_answer = ask_ai(**params)
responses.append(ai_answer)
# --- Save Additional AI Response ---
save_chat_message(db, user_id=current_user.id, sender=MessageSender.AI, text=ai_answer)
# ---------------------------------
return ProcessCommandResponse(responses=responses)
case "get_calendar_events":
# get_calendar_events returns List[CalendarEvent models]
events: List[CalendarEvent] = get_calendar_events(db, current_user.id, **params)
responses.extend(format_calendar_events(events))
formatted_responses = format_calendar_events(events)
responses.extend(formatted_responses)
# --- Save Additional AI Responses ---
for resp in formatted_responses:
save_chat_message(db, user_id=current_user.id, sender=MessageSender.AI, text=resp)
# ----------------------------------
return ProcessCommandResponse(responses=responses)
case "add_calendar_event":
# Validate input with Pydantic schema
event_data = CalendarEventCreate(**params)
created_event = create_calendar_event(db, current_user.id, event_data)
start_str = created_event.start.strftime("%Y-%m-%d %H:%M") if created_event.start else "No start time"
title = created_event.title or "Untitled Event"
responses.append(f"Added: {title} starting at {start_str}.")
add_response = f"Added: {title} starting at {start_str}."
responses.append(add_response)
# --- Save Additional AI Response ---
save_chat_message(db, user_id=current_user.id, sender=MessageSender.AI, text=add_response)
# ---------------------------------
return ProcessCommandResponse(responses=responses)
case "update_calendar_event":
event_id = params.pop('event_id', None)
if event_id is None:
raise HTTPException(status_code=400, detail="Event ID is required for update.")
# Validate input with Pydantic schema
# Save the error message before raising
error_msg = "Event ID is required for update."
save_chat_message(db, user_id=current_user.id, sender=MessageSender.AI, text=error_msg)
raise HTTPException(status_code=400, detail=error_msg)
event_data = CalendarEventUpdate(**params)
updated_event = update_calendar_event(db, current_user.id, event_id, event_data=event_data)
title = updated_event.title or "Untitled Event"
responses.append(f"Updated event ID {updated_event.id}: {title}.")
update_response = f"Updated event ID {updated_event.id}: {title}."
responses.append(update_response)
# --- Save Additional AI Response ---
save_chat_message(db, user_id=current_user.id, sender=MessageSender.AI, text=update_response)
# ---------------------------------
return ProcessCommandResponse(responses=responses)
case "delete_calendar_event":
event_id = params.get('event_id')
if event_id is None:
raise HTTPException(status_code=400, detail="Event ID is required for delete.")
# Save the error message before raising
error_msg = "Event ID is required for delete."
save_chat_message(db, user_id=current_user.id, sender=MessageSender.AI, text=error_msg)
raise HTTPException(status_code=400, detail=error_msg)
delete_calendar_event(db, current_user.id, event_id)
responses.append(f"Deleted event ID {event_id}.")
delete_response = f"Deleted event ID {event_id}."
responses.append(delete_response)
# --- Save Additional AI Response ---
save_chat_message(db, user_id=current_user.id, sender=MessageSender.AI, text=delete_response)
# ---------------------------------
return ProcessCommandResponse(responses=responses)
case _:
print(f"Warning: Unhandled intent '{intent}' reached api.py match statement.")
# The initial response_text was already saved
return ProcessCommandResponse(responses=responses)
except HTTPException as http_exc:
# Don't save again if already saved before raising
if http_exc.status_code != 400 or ('event_id' not in http_exc.detail.lower()):
save_chat_message(db, user_id=current_user.id, sender=MessageSender.AI, text=http_exc.detail)
raise http_exc
except Exception as e:
print(f"Error executing intent '{intent}': {e}")
return ProcessCommandResponse(responses=["Sorry, I encountered an error while trying to perform that action."])
error_response = "Sorry, I encountered an error while trying to perform that action."
# --- Save Final Error AI Response ---
save_chat_message(db, user_id=current_user.id, sender=MessageSender.AI, text=error_response)
# ----------------------------------
return ProcessCommandResponse(responses=[error_response])
# --- New Endpoint for Chat History ---
# Define a Pydantic schema for the response (optional but good practice)
from pydantic import BaseModel
from datetime import datetime
class ChatMessageResponse(BaseModel):
id: int
sender: MessageSender # Use the enum directly
text: str
timestamp: datetime
class Config:
from_attributes = True # Allow Pydantic to work with ORM models
@router.get("/history", response_model=List[ChatMessageResponse])
def read_chat_history(current_user: User = Depends(get_current_user), db: Session = Depends(get_db)):
"""Retrieves the last 50 chat messages for the current user."""
history = get_chat_history(db, user_id=current_user.id, limit=50)
return history
# -------------------------------------

View File

@@ -0,0 +1,23 @@
\
# /home/cdp/code/MAIA/backend/modules/nlp/models.py
from sqlalchemy import Column, Integer, String, Text, DateTime, ForeignKey, Enum as SQLEnum
from sqlalchemy.orm import relationship
from sqlalchemy.sql import func
import enum
from core.database import Base
class MessageSender(enum.Enum):
USER = "user"
AI = "ai"
class ChatMessage(Base):
__tablename__ = "chat_messages"
id = Column(Integer, primary_key=True, index=True)
user_id = Column(Integer, ForeignKey("users.id"), nullable=False, index=True)
sender = Column(SQLEnum(MessageSender), nullable=False)
text = Column(Text, nullable=False)
timestamp = Column(DateTime(timezone=True), server_default=func.now())
owner = relationship("User") # Relationship to the User model

View File

@@ -1,8 +1,14 @@
# modules/nlp/service.py
from sqlalchemy.orm import Session
from sqlalchemy import desc # Import desc for ordering
from google import genai
import json
from datetime import datetime, timezone
from typing import List # Import List
# Import the new model and Enum
from .models import ChatMessage, MessageSender
# from core.config import settings
# client = genai.Client(api_key=settings.GOOGLE_API_KEY)
@@ -70,6 +76,27 @@ Here is some context for you:
Here is the user request:
"""
# --- Chat History Service Functions ---
def save_chat_message(db: Session, user_id: int, sender: MessageSender, text: str):
"""Saves a chat message to the database."""
db_message = ChatMessage(user_id=user_id, sender=sender, text=text)
db.add(db_message)
db.commit()
db.refresh(db_message)
return db_message
def get_chat_history(db: Session, user_id: int, limit: int = 50) -> List[ChatMessage]:
"""Retrieves the last 'limit' chat messages for a user."""
return db.query(ChatMessage)\
.filter(ChatMessage.user_id == user_id)\
.order_by(desc(ChatMessage.timestamp))\
.limit(limit)\
.all()[::-1] # Reverse to get oldest first for display order
# --- Existing NLP Service Functions ---
def process_request(request: str):
"""
Process the user request using the Google GenAI API.