Files
MAIA/backend/modules/nlp/service.py

140 lines
5.2 KiB
Python

# modules/nlp/service.py
from sqlalchemy.orm import Session
from sqlalchemy import desc # Import desc for ordering
from google import genai
import json
from datetime import datetime, timezone
from typing import List # Import List
# Import the new model and Enum
from .models import ChatMessage, MessageSender
# from core.config import settings
# client = genai.Client(api_key=settings.GOOGLE_API_KEY)
client = genai.Client(api_key="AIzaSyBrte_mETZJce8qE6cRTSz_fHOjdjlShBk")
### Base prompt for MAIA, used for inital user requests
SYSTEM_PROMPT = """
You are MAIA - My AI Assistant. Your job is to parse user requests into structured JSON commands and generate a user-facing response text.
Available functions/intents:
1. ask_ai(request: str): Use for simple questions (e.g., weather, facts). Forward the user's request.
2. get_calendar_events(start: Optional[datetime], end: Optional[datetime]): Retrieve calendar events.
3. add_calendar_event(title: str, description: str, start: datetime, end: Optional[datetime], location: str): Add a new event.
4. update_calendar_event(event_id: int, title: Optional[str], description: Optional[str], start: Optional[datetime], end: Optional[datetime], location: Optional[str]): Update an existing event. Requires event_id.
5. delete_calendar_event(event_id: int): Delete an event. Requires event_id.
6. clarification_needed(request: str): Use this if the user's request is ambiguous or lacks necessary information (like event_id for update/delete). The original user request should be passed in the 'request' parameter.
**IMPORTANT:** Respond ONLY with JSON containing BOTH "intent" and "params", AND a "response_text" field.
- "response_text" should be a friendly, user-facing message confirming the action taken, providing the answer, or asking for clarification.
Examples:
User: Add a meeting tomorrow at 3pm about project X
MAIA:
{
"intent": "add_calendar_event",
"params": {
"title": "Meeting",
"description": "Project X",
"start": "2025-04-19 15:00:00.000000+00:00",
"end": null,
"location": null
},
"response_text": "Okay, I've added a meeting about Project X to your calendar for tomorrow at 3 PM."
}
User: What's the weather like?
MAIA:
{
"intent": "ask_ai",
"params": {
"request": "What's the weather like?"
},
"response_text": "Let me check the weather for you."
}
User: Delete the team sync event.
MAIA:
{
"intent": "clarification_needed",
"params": {
"request": "Delete the team sync event."
},
"response_text": "Okay, I can help with that. Could you please provide the ID or more specific details about the 'team sync' event you want me to delete?"
}
The datetime right now is """+str(datetime.now(timezone.utc))+""".
"""
### Prompt for MAIA to forward user request to AI
SYSTEM_FORWARD_PROMPT = f"""
You are MAIA - My AI Assistant. Your job is to answer user simple user requests.
Here is some context for you:
- The datetime right now is {str(datetime.now(timezone.utc))}.
Here is the user request:
"""
# --- Chat History Service Functions ---
def save_chat_message(db: Session, user_id: int, sender: MessageSender, text: str):
"""Saves a chat message to the database."""
db_message = ChatMessage(user_id=user_id, sender=sender, text=text)
db.add(db_message)
db.commit()
db.refresh(db_message)
return db_message
def get_chat_history(db: Session, user_id: int, limit: int = 50) -> List[ChatMessage]:
"""Retrieves the last 'limit' chat messages for a user."""
return db.query(ChatMessage)\
.filter(ChatMessage.user_id == user_id)\
.order_by(desc(ChatMessage.timestamp))\
.limit(limit)\
.all()[::-1] # Reverse to get oldest first for display order
# --- Existing NLP Service Functions ---
def process_request(request: str):
"""
Process the user request using the Google GenAI API.
Expects a JSON response with intent, params, and response_text.
"""
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=SYSTEM_PROMPT + f"\n\nUser: {request}\nMAIA:",
config={
"temperature": 0.3, # Less creativity, more factual
"response_mime_type": "application/json",
}
)
# Parse the JSON response
try:
parsed_response = json.loads(response.text)
# Validate required fields
if not all(k in parsed_response for k in ("intent", "params", "response_text")):
raise ValueError("AI response missing required fields (intent, params, response_text)")
return parsed_response
except (json.JSONDecodeError, ValueError) as e:
print(f"Error parsing AI response: {e}")
print(f"Raw AI response: {response.text}")
# Return a structured error that the API layer can handle
return {
"intent": "error",
"params": {},
"response_text": "Sorry, I had trouble understanding that request or formulating a response. Could you please try rephrasing?"
}
def ask_ai(request: str):
"""
Ask the AI a question.
This is only called by MAIA when the intent is a simple question.
"""
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=SYSTEM_FORWARD_PROMPT+request,
)
return response.text