now using new face linking code, and working, removed many debugs, needs work (around log commits). Also put a quick hack to create Bin path on init, but need to rethink this bit

This commit is contained in:
2021-06-30 14:29:28 +10:00
parent ea663926f2
commit d74df55e58

View File

@@ -954,10 +954,8 @@ def WrapperForScanFileForPerson(job, entry):
ppl=session.query(Person).filter(Person.tag==which_person).all()
if entry.type.name == 'Image':
print( f"JobRunAIOn: file to process had id: {entry.id}" )
for person in ppl:
print( f"call == ScanFileForPerson( {entry.id}, {person.id}, force=False )" )
ScanFileForPerson( entry, person.id, force=False)
ScanFileForPerson( job, entry, person.id, force=False)
return
def JobRunAIOn(job):
@@ -967,26 +965,22 @@ def JobRunAIOn(job):
ppl=session.query(Person).all()
else:
ppl=session.query(Person).filter(Person.tag==which_person).all()
print( "JobRunAIOn() called" )
# FIXME: probably shouldbe elsewhere, but this is optmised so if refimgs exist for ppl, then it wont regen them
for person in ppl:
print( f"person={person.tag}" )
generateKnownEncodings(person)
for jex in job.extra:
if 'eid-' in jex.name:
entry=session.query(Entry).get(jex.value)
print( f'en={entry.name}, {entry.type.name}' )
if entry.type.name == 'Directory':
ProcessFilesInDir( job, entry, WrapperForScanFileForPerson )
elif entry.type.name == 'Image':
which_file=session.query(Entry).join(File).filter(Entry.id==jex.value).first()
print( f"JobRunAIOn: file to process had id: {which_file.id}" )
for person in ppl:
print( f"call == ScanFileForPerson( {which_file.id}, {person.id}, force=False )" )
ScanFileForPerson( which_file, person.id, force=False)
ScanFileForPerson( job, which_file, person.id, force=False)
else:
AddLogForJob( job, f'Not processing Entry: {entry.name} - not an image' )
#print(" HARD EXITING to keep testing " )
#exit( -1 )
FinishJob(job, "Finished Processesing AI")
return
@@ -1093,6 +1087,7 @@ def generateKnownEncodings(person):
img = face_recognition.load_image_file(file)
location = face_recognition.face_locations(img)
encodings = face_recognition.face_encodings(img, known_face_locations=location)
print(f"INFO: created encoding for refimg of {file}")
refimg.encodings = encodings[0].tobytes()
refimg.created_on = time.time()
session.add(refimg)
@@ -1105,8 +1100,7 @@ def compareAI(known_encoding, unknown_encoding):
def ProcessFilesInDir(job, e, file_func):
if DEBUG==1:
print( f"???? e={e}" )
# print( f"DEBUG: ProcessFilesInDir: {e.FullPathOnFS()}")
print( f"DEBUG: ProcessFilesInDir: {e.FullPathOnFS()}")
if e.type.name != 'Directory':
file_func(job, e)
else:
@@ -1324,7 +1318,7 @@ def JobDeleteFiles(job):
if 'eid-' in jex.name:
del_me=session.query(Entry).join(File).filter(Entry.id==jex.value).first()
MoveFileToRecycleBin(job,del_me)
now=datetime.now(pytz.utc)
ynw=datetime.now(pytz.utc)
next_job=Job(start_time=now, last_update=now, name="checkdups", state="New", wait_for=None, pa_job_state="New", current_file_num=0 )
session.add(next_job)
MessageToFE( job.id, "success", "Completed (delete of selected files)" )
@@ -1365,6 +1359,10 @@ def InitialValidationChecks():
break
if not rbp_exists:
AddLogForJob(job, "ERROR: The bin path in settings does not exist - Please fix now");
else:
bin_path=session.query(Path).join(PathType).filter(PathType.name=='Bin').first()
if not bin_path:
ProcessRecycleBinDir(job)
sp_exists=0
paths = settings.storage_path.split("#")
for path in paths:
@@ -1389,10 +1387,8 @@ def InitialValidationChecks():
FinishJob(job,"Finished Initial Validation Checks")
return
#### CAM: New FACES/AI code
def AddFaceToFile( face_data, file_eid ):
face = Face( face=face_data )
face = Face( face=face_data.tobytes() )
session.add(face)
session.commit()
ffl = FaceFileLink( face_id=face.id, file_eid=file_eid )
@@ -1412,46 +1408,50 @@ def MatchRefimgToFace( refimg_id, face_id ):
return
def UnmatchedFacesForFile( eid ):
rows = session.execute( f"select f.id, ffl.file_eid, frl.refimg_id from face f left join face_refimg_link frl on f.id = frl.face_id join face_file_link ffl on f.id = ffl.face_id where ffl.file_eid = {eid} and frl.refimg_id is null" )
rows = session.execute( f"select f.* from face f left join face_refimg_link frl on f.id = frl.face_id join face_file_link ffl on f.id = ffl.face_id where ffl.file_eid = {eid} and frl.refimg_id is null" )
return rows
### CAM: something like this -- HAVE NOT TRIED THIS IT WILL FAIL###
def ScanFileForPerson( e, person_id, force=False ):
def ScanFileForPerson( job, e, person_id, force=False ):
AddLogForJob( job, f'INFO: Looking for person: {person_id} in file: {e.name}' )
file_h = session.query(File).get( e.id )
# if we are forcing this, delete any old faces (this will also delete linked tables), and reset faces_created_on to None
if force:
AddLogForJob( job, f'INFO: force is true, so deleting old face information for {e.name}' )
DelFacesForFile( e.id )
file_h.faces_create_on = None
file_h.faces_created_on = 0
# optimise: dont rescan if we already have faces (we are just going to try
# to match (maybe?) a refimg
if not file_h.faces_created_on:
print("------------- CAM -----------:\n")
if file_h.faces_created_on == 0:
if DEBUG:
AddLogForJob( job, f"DEBUG: {e.name} is missing unknown faces, generating them" )
im = face_recognition.load_image_file(e.FullPathOnFS())
print(im)
face_locations = face_recognition.face_locations(im)
print(f"FACE LOCATIONS: {face_locations}")
unknown_encodings = face_recognition.face_encodings(im, known_face_locations=face_locations)
print("AAAAAAAAAAAAAAAA " + str(len(unknown_encodings)))
for face in unknown_encodings:
new_face = Face( face_data = face )
session.add(new_face)
AddFaceToFile( face, e.id )
file_h.faces_created_on = time.time()
session.commit()
AddFaceToFile( new_face.id, e.id )
now=datetime.now(pytz.utc)
file_h.face_created_on = now
## now look for person
refimgs = session.query(Refimg).join(PersonRefimgLink).filter(PersonRefimgLink.person_id==person_id).all()
uf = UnmatchedFacesForFile( e.id )
if DEBUG and not uf:
AddLogForJob( job, "DEBUG: {e.name} all faces already matched - finished" )
for face in uf:
for r in refimgs:
match = compareAI(r, uf)
if match:
print(f'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA WE MATCHED: {r}, {uf}')
unknown_face_data = numpy.frombuffer(face.face, dtype=numpy.float64)
refimg_face_data = numpy.frombuffer(r.encodings, dtype=numpy.float64)
match = compareAI(refimg_face_data, unknown_face_data)
if match[0]:
AddLogForJob(job, f'WE MATCHED: {r.fname} with file: {e.name} ')
MatchRefimgToFace( r.id, face.id )
# no need to keep looking for this face, we found it, go to next unknown face
break
return
if __name__ == "__main__":
print("INFO: PA job manager starting - listening on {}:{}".format( PA_JOB_MANAGER_HOST, PA_JOB_MANAGER_PORT) )